MATH 5061 Problem Set 3¹ Due date: Mar 3, 2021

Problems: (Please hand in your assignments via Blackboard. Late submissions will not be accepted.)

Throughout this assignment, we use (M, g) to denote a smooth *n*-dimensional Riemannian manifold with its Levi-Civita connection ∇ unless otherwise stated.

- 1. Prove that the antipodal map A(p) = -p induces an isometry on \mathbb{S}^n . Use this to introduce a Riemannian metric on \mathbb{RP}^n such that the projection map $\pi : \mathbb{S}^n \to \mathbb{RP}^n$ is a local isometry.
- 2. Show that the isometry group of \mathbb{S}^n , with the induced metric from \mathbb{R}^{n+1} , is the orthogonal group O(n+1).
- 3. For any smooth curve $c: I \to M$ and $t_0, t \in I$, we denote the parallel transport map as $P = P_{c,t_0,t} : T_{c(t_0)}M \to T_{c(t)}M$ along c from $c(t_0)$ to c(t).
 - (a) Show that P is a linear isometry. Moreover, if M is oriented, then P is also orientation-preserving.
 - (b) Let X, Y be vector fields on $M, p \in M$. Suppose $c : I \to M$ is an integral curve of X with $c(t_0) = p$. Prove that

$$(\nabla_X Y)(p) = \left. \frac{d}{dt} \right|_{t=t_0} P_{c,t_0,t}^{-1}(Y(c(t))).$$

4. Let TM be the tangent bundle of M. Let $(p, v) \in TM$, i.e. $v \in T_pM$, and $V, W \in T_{(p,v)}(TM)$. Choose curves $\alpha(t) = (p(t), v(t))$ and $\beta(s) = (q(s), w(s))$ in TM with p(0) = q(0) = p, v(0) = w(0) = v, and $V = \alpha'(0)$, $W = \beta'(0)$. Define an inner product on TM by

$$\langle V, W \rangle_{(p,v)} = \langle d\pi(V), d\pi(W) \rangle_p + \langle \frac{Dv}{dt}(0), \frac{Dw}{ds}(0) \rangle_p.$$

Here, $d\pi$ is the differential of the projection map $\pi: TM \to M$.

- (a) Prove that $\langle \cdot, \cdot \rangle$ is well-defined and defines a Riemannian metric on TM.
- (b) A vector at $(p, v) \in TM$ is called *horizontal* if it is $\langle \cdot, \cdot \rangle$ -orthogonal to the fiber $\pi^{-1}(p) \cong T_pM$. A curve $c : I \to TM$ is called *horizontal* if its tangent vector is everywhere horizontal. Prove that a curve c(t) = (p(t), v(t)) is horizontal if and only if v(t) is a parallel vector field along the curve $t \mapsto p(t)$ in M.
- (c) Prove that the geodesic field is a horizontal vector field.
- (d) Prove that the trajectories of the geodesic field are geodesics on TM with respect to $\langle \cdot, \cdot \rangle$.

¹Last revised on February 28, 2021